江西省 2021 年初中学业水平考试

数学学科试卷说明

一、考试方式和考试时长

闭卷、笔试形式,考试时长为120分钟。

二、试卷结构

数学全卷满分 120 分, 试卷题型、题量和分值如下表:

题型	题量 (个)	分值(分)
单项选择题	6	18
填空题	6	18
解答题(含计算、作图、 证明、应用、探究、开放、 综合与实践等)	11	84

三、题型示例

(一) 单项选择题(本大题共6小题,每小题3分,共18分)

[例 1] -3 的绝对值是

B. 3

C. $-\frac{1}{3}$ D. $\frac{1}{3}$

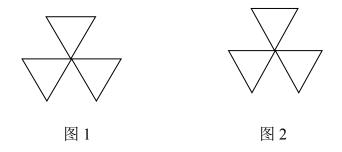
[例 2]已知抛物线 $v = ax^2 + c$ ($a \neq 0$) 与 x 轴交于点 A, B 两点,顶点为 C, 若 \triangle ABC 为等边三角形,则 ac 的值为

A. -3

B. $-\sqrt{3}$ C. -1 D. $-3\sqrt{3}$

(二)填空题(本大题共6小题,每小题3分,共18分)

[**例** 3] 因式分解: $a^2-1=$.


[例 4] 若关于 x 的一元二次方程 $x^2-2x-k=0$ 有两个实数根,则 k 的取值范围 为____.

[例 5]已知 $\triangle ABC$ 是边长为 3 的等边三角形, $\triangle ACD$ 是一个含 30° 角的直角三 角形, $\triangle ABC$ 和 $\triangle ACD$ 组成一个凸四边形 ABCD, 则线段 BD 的长为

(三)解答题(本大题共11小题,共84分)

[**例 6**]解不等式组 $\begin{cases} 2x+1 \ge -3, \\ 3(x-1)+1 < 2, \end{cases}$ 请画出数轴,并在数轴上表示解集.

- [例 7]三个面积都为 1 的等边三角形共一个顶点,均匀分布组成的平面图形如下,请仅用无刻度的直尺作图.
 - (1) 在图 1 中,作出图形的一条对称轴 l;
 - (2) 在图 2 中,作一个面积为 4 的菱形 ABCD.

- **[例 8]**如图 1,是一副三角板的摆放示意图,直角边 BC 与斜边 DF 在同一直线上,直角边 AC 经过等腰直角 $\triangle DEF$ 的顶点 E, $\angle A=30^\circ$, $AC=DF=8\sqrt{3}$ cm. (结果保留小数点后一位)
 - (1) $\triangle EFD$ 保持不动,把 $\triangle ABC$ 沿 FD 方向平移,使点 B 与点 F 重合,AC 交 ED 于点 G,求 $\angle GFC$ 的度数.
 - (2) 在(1)的条件下,将 $\triangle ABC$ 绕点 C 顺时针旋转(旋转角小于 90 度),当 AB//EF 时,求点 A 到直线 DF 的距离.
 - (参考数据: $\sin 75^{\circ} \approx 0.966$, $\cos 75^{\circ} \approx 0.259$, $\tan 75^{\circ} \approx 3.73$, $\sin 47.1^{\circ} \approx 0.732$, $\cos 42.9^{\circ} \approx 0.732$, $\tan 36.2^{\circ} \approx 0.732$, $\sqrt{3} \approx 1.732$)

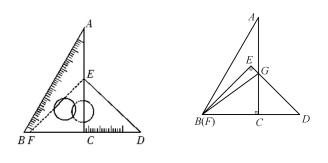
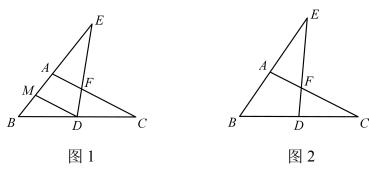
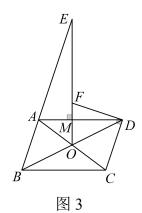



图 1

备用图

[例 9]特例感知

- (1) 如图 1,已知 DM 是 $\triangle ABC$ 的中位线,E 是 BA 的延长线上一点,连结 DE,交 AC 于点 F.
 - ①若 AC=DE,则 AF 的值为_____;
 - ②若 AC=2, DE=3, 则 <u>AF</u> 的值为_____;



深入探究

(2) 如图 2, 在 $\triangle ABC$ 中,D是 BC的中点,E在 BA的延长线上,AC与 DE相交于 F.设 AC=m,DE=n,求 $\frac{AF}{FF}$ 的值(用含 m,n的式子表示);

拓展应用

(3) 如图 3,平行四边形 ABCD 的对角线 AC, BD 交于点 O, 作 $OE \perp AD$ 于 点 M, 与 BA 延长线交于点 E, 将 CD 绕点 D 顺时针旋转 90° ,点 C 的 对应点 F 恰好落在 EO 上,若 $OE = \frac{3}{2}AD$, $AE = \sqrt{10}$,求 BD 的长.

